

®

Using the Jam Language for
ISP via an

Embedded Processor

February 1998, ver. 2 Application Note 88

Introduction In-system programming via an embedded processor, available in

MAX® 9000 (including MAX 9000A), MAX 7000S, and MAX 7000A

devices, enables easy design prototyping, streamlines production, and

allows quick and efficient in-field upgrades. Devices that support in-

system programmability (ISP) can be upgraded in the field easily by

downloading new configurations using ROM, FLASH cards, modems, or

other data links. Design changes can also be downloaded to a system in

the field via an embedded processor. The embedded processor transfers

programming data from a memory source to a device and allows easy

design upgrades.

The Jam™ programming and test language, a new standard file format for

ISP, is designed to support programming of any ISP-capable device that

uses the IEEE Std. 1149.1 Joint Test Action Group (JTAG) interface. The

Jam language is an interpreted language and is a freely licensable open

standard. The Jam source code is executed directly by an interpreter

program executed by an embedded processor, without being compiled

into binary executable code (see “Embedded Programming with the Jam

Language” on page 172). The Jam source code, or Jam File, contains the

programming algorithm and data to upgrade one or more devices.

This application note describes how to use the Jam language to achieve

the benefits of ISP via an embedded processor, including:

■ Embedded system configuration and requirements

■ Embedded programming with the Jam language

1 This application note should be used with the Jam Programming
& Test Language Specification in this handbook.

Embedded
System
Configuration &
Requirements

To achieve the benefits of ISP, an embedded system must be able to

program target devices using a small amount of system memory, and it

must be flexible enough to adapt to a changing set of devices from

multiple device vendors. The embedded system typically consists of an

embedded processor, EPROM or system memory, and some interface

logic. Programming data is stored in system memory (i.e., EPROM or

FLASH memory).
Altera Corporation 169

A-AN-088-02

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

During in-system programming, the embedded processor transfers

programming data from system memory to the ISP-capable device(s).

Figure 1 shows a block diagram of an embedded system.

Figure 1. Embedded System Block Diagram

The embedded processor is connected to the EPROM or system memory

and a programmable logic device (PLD) that stores the optional interface

logic. The JTAG chain can connect directly to four of the embedded

processor’s data pins; however, adding the interface logic allows you to

save these four ports, because it treats the JTAG chain as an address

location on the existing bus. Additionally, you should install a 10-pin

ByteBlaster™ header on the board to allow the MAX+PLUS® II software

and ByteBlaster parallel port download cable to access and verify the

JTAG chain.

f For more information on the ByteBlaster parallel port download cable, see

the ByteBlaster Parallel Port Download Cable Data Sheet in this handbook.

Figure 2 illustrates the embedded system’s interface logic.

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

TDI

TMS

TCK

TDO

ControlControl

D[3..0]D[7..0]

ADR[19..0]

Control

D[7..0]

ADR[19..0]ADR[19..0]

Interface
Logic

(Optional)

Any JTAG
Device

EPROM or
 System
Memory

to/from ByteBlaster

Embedded
Processor

Embedded System

8

8

4

20

2020

MAX 9000,
MAX 9000A,
MAX 7000S,
or MAX 7000A
Device

Any JTAG
Device
170 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

Figure 2. Interface Logic

The interface logic is activated when it receives the proper address and

control signals from the embedded processor. The registers then

synchronize the timing of the TDI , TCK, and TMS signals and drive the

output pins via a 74157 multiplexer. The multiplexer allows the

ByteBlaster cable to access the JTAG chain for verification.

PR

CLR

D

EN

PR

CLR

D

EN

PR

CLR

D

EN

SEL

A1
B1
A2
B2
A3
B3

Y1

Y2

Y3

Y4
A4
B4
GN

adr[19..0] AD_VALID

TDO

TDI

TMS

TCK

DATA3

DATA2

DATA1

DATA0

TDI Register

TMS Register

TCK Register

ByteBlaster_nProcessor_Select

ByteBlaster_TDI

ByteBlaster_TMS

ByteBlaster_TCK

ByteBlaster_TDO

adr[19..0]

nDS

D[3..0]

R_nW

R_AS

nRESET

CLK

address_decode

74157
Multiplexer
Altera Corporation 171

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

Embedded
Programming
with the Jam
Language

Implementing the Jam language implementation has two parts: the Jam

File (.jam) and the Jam Player. A Jam File is generated from the

MAX+PLUS II development software and is stored in system memory.

The Jam File contains all information required to program the ISP-capable

device(s). The Jam Player runs on the embedded processor, interprets the

information in the Jam File, and generates the binary data stream for

device programming. Because upgrades are confined to the Jam File, the

Jam Player can be used to program any vendor’s device without requiring

upgrades.

Figure 3 shows a block diagram of how in-system programming is

achieved with the Jam language.

Figure 3. Block Diagram of ISP using Jam File & Jam Player

The Jam File (.jam)

Jam Files are compact and can be generated for any ISP-capable device

that complies with the IEEE Std. 1149.1 (JTAG) specification.

Generating a Jam File

To program Altera devices using the Jam language, you must first create

a Jam File with the MAX+PLUS II development software. You can use the

MAX+PLUS II software to generate a Jam File from a Programmer Object

File (.pof) using the Create Jam/SVF File command (File menu). Because

Jam Files are generated from POFs, recompiling existing designs is not

necessary. To store a Jam File in EPROM or FLASH memory, you must

first convert it to a Hexadecimal (Intel-format) File (.hex) or a similar

programming file. Embedded processor software packages or other

utilities can automatically convert Jam Files for EPROM or FLASH

programming. Likewise, some EPROM programmers support “raw

binary” or “absolute binary” formats, which allow the Jam File to be read

directly by the programmer without conversion.

f For more information on how to create a Jam File, search for “Create Jam

or SVF Files” in MAX+PLUS II Help.

System Memory

Jam Player

Embedded Processor

to JTAG Chain
00100…0100…etc.

JTAG Binary Data Stream
.jam
172 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

Figure 4 describes how to generate a Jam File for in-system programming.

Figure 4. Generating a Jam File

EPROM/ FLASH
Device

 MAX+PLUS II

Utility

.pof .pof .pof

.jam

.hex

Compile
Design 1

Compile
Design 2

Compile
Design N

Compile your designs with
MAX+PLUS II software.

The MAX+PLUS II
software generates
the POFs.

MAX+PLUS II
software converts
POFs to a Jam File.

Use utility to
create Hex File
or similar
programming file.

Program Hex File or
other programming
file into EPROM/
FLASH devices.
Altera Corporation 173

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

Initialization Conventions

The MAX+PLUS II software generates Jam Files that use Jam conventions

for initialization. This section describes special conventions that are

supported by the Jam language; the conventions may vary for each device

in a JTAG chain.

DO_PROGRAM

The DO_PROGRAM variable determines whether a device should be

programmed. When DO_PROGRAM is set to 1, the Jam Player performs the

silicon ID, bulk erase, and program functions for one or more ISP-capable

devices. When programming more than one device in the same family, the

MAX+PLUS II software will use a concurrent programming algorithm

(i.e., programming data will shift through all devices of the same family

at the same time.)

Targeted devices will tri-state I/O pins at the beginning of programming,

and all I/O pins will leave the tri-state mode when the last device has

finished programming. Both transitions happen simultaneously for all of

the targeted devices in the JTAG chain.

DO_VERIFY

The DO_VERIFY variable tells the Jam File to verify the device. When

DO_VERIFY is set to 1, the targeted devices are verified. The result of

verification is indicated by the exit code of the Jam program.

DO_ERASE

The DO_ERASE variable causes the Jam File to perform a bulk erase (i.e.,

the device is completely erased). This process ensures the proper

programming of each bit and the reliability of the device after multiple

programming cycles.

DO_BLANKCHECK

The DO_BLANKCHECK variable ensures that the entire device has been

properly bulk erased before programming. The DO_BLANKCHECK variable

verifies that all data is erased.

READ_UESCODE

The READ_UESCODE variable is useful for tracking design revisions or the

number of times a device has been programmed. When READ_USERCODE

is set to 1, the user electronic signature (UES) is read from the device and

reported.
174 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

f For more information on initialization conventions, see the Jam
Programming & Test Language Specification in this handbook.

Jam File Structure

In an embedded system, a Jam File is placed in system memory that can

be updated. A Jam File is structured to be compact; it has a Variable

Declaration/Initialization Section and an Algorithm Section. Figure 5

illustrates the Jam File structure.

Figure 5. Structure of the Jam File

The Variable Declaration and Initialization Section contains the declared

variables that will be used in the Jam File. The variables can also be

initialized to specific values. In the case of a BOOLEAN array, the variable

can be initialized as a compressed data array, which is either the

Run-Length Compression (RLC) or Advanced Compression Algorithm

(ACA) formats. Variables of other types can be declared and initialized in

this section; initialization of these variables is optional.

f For more detail on the RLC or ACA data array formats, see the Jam
Programming & Test Language Specification.

The Algorithm Section, written entirely in text, can be broken into

subsections that contain the actual programming commands and

programming code that performs other necessary functions (e.g.,

branching based on the results of verification, looping for multiple JTAG

data register scans, or other administrative functions to track the targeted

JTAG chain). The Algorithm Section contains the superset of functions

(e.g., blank check, verify, etc.) that can be performed on the targeted

device(s).

 • Compressed Program/Verify Data
 • Initialized Variables

 • Check Silicon ID
 • Blank Check (Optional)
 • Bulk Erase & Program (Optional)
 • Read UES (Optional)
 • Verify (Optional)
Exit ();

Variable Declaration/Initialization Section

Algorithm Section

Jam File
Altera Corporation 175

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

The Jam Player

The Jam Player is a C program that parses the Jam File, interprets each Jam

instruction, and reads and writes data to and from the JTAG chain. The

variables processed by the Jam Player depend on the initialization list

variables present at the time of execution (see “Executing the Jam Player”

on page 177 for more information). Because each application has unique

requirements, the Jam Player source code can be modified easily. Figure 6

illustrates the Jam Player source code structure.

Figure 6. Jam Player Source Code Structure

The main program performs all of the basic functions of the Jam Player

without having to be modified. Only the I/O functions, which are

contained in the jamstub.c file, need to be modified for your application.

These functions include those that specify addresses to I/O pins, delay

routines, operating system-specific functions, and routines for file I/O.

The Jam Player resides permanently in system memory, where it

interprets the commands given in the Jam File and generates a binary data

stream for device programming. This structure confines all upgrades to

the Jam File, and it allows the Jam Player to adapt to any system

architecture.

.jam

Jam Player

I/O Functions
(jamstub.c file)

Main Program

Parse Compare
& ExportInterpret

Error
Message

TCK

TMS

TDI

TDO
176 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

Customizing the Jam Player

The Jam Player has been structured to simplify customization based on

platform requirements and applications. All file I/O and port

configurations can be changed by simply editing the jamstub.c file. As an

input, the jamstub.c file can retrieve data from the Jam File and/or read

shifted data that comes out of TDO. As an output, the jamstub.c file can

send processed JTAG data to the three JTAG pins: TDI , TMS, and TCK,
send formatted error and information messages back to the calling

program, and/or send status and information back to the calling

program.

In addition, detailed information about porting the Jam Player is provided

with the Jam Player source code. Contact Altera Applications at

(800) 800-EPLD for more information.

Executing the Jam Player

The Jam Player provides the flexibility to specify which ISP functions will

be performed by using flags that are passed to the Jam Player at the time

of execution. Jam Player usage takes the following form:

jam[-h] [-v] [-p <Hexadecimal parallel port address>] [- m<Memory size in
bytes>] -d <Initialization list> <Jam File>

Flags with brackets ([]) are optional. The Jam Player can process only one

Jam File at a time. Table 1 describes the function of each flag.

Note:
(1) This flag is optional.

Table 1. Jam Player Flags

Flag Definition Function

-h (1) Help Reports the Jam Player version.

-v (1) Verbose Reports status and error messages with detailed real-
time information.

-d Initialize Tells the Jam Player what functions to perform.

-p (1) Port Specifies the parallel port address where the Jam Player
should send data.

-m (1) Memory Specifies the amount of memory the Jam Player can use.
Altera Corporation 177

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor

When using the -d flag, certain variables from the initialization list are

provided for initializing the Jam Player. Table 2 describes the variable set

used after the -d flag.

Variables that are not initialized after a -d flag are set to 0. The order of

variables in the initialization list is not important. Each variable set after

the -d flag applies to the device(s) specified in the Jam File. Figure 7 shows

a JTAG chain with three devices that are each targeted for a specific

function(s) by the Jam File.

Figure 7. JTAG Chain with Three Devices

Table 2. -d Flag Variable Names & Their Functions

Variable Name Value Function

DO_ERASE 0 Do not perform a bulk erase.

1 Perform a bulk erase.

DO_BLANKCHECK 0 Do not check the erased state of the device.

1 Check the erased state of the device.

DO_PROGRAM 0 Do not program the device.

1 Program the device.

DO_VERIFY 0 Do not verify the device.

1 Verify the device.

READ_UESCODE 0 Do not read the JTAG UES code.

1 Read and report the UES code.

DO_SECURE 0 Do not set the security bit.

1 Set the security bit.

TDI

TCK

TMS

TDO

DO_PROGRAM

DO_VERIFY
DO_VERIFY READ_UESCODE

Device 1 Device 2 Device 3
178 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
In Figure 7, only the DO_PROGRAM and DO_VERIFY variables are initialized

to 1 at the time the Jam Player is executed, device 1 is programmed and

verified; device 2 is verified; and no operation is performed on device 3.

The following text typed at the command line causes the Jam Player to

report error and information messages, program and verify the device(s),

limit memory to 1 Mbyte, and write/read data through the parallel port

at base address 0x378 for the Jam File chiptrip.jam:

jam -v -p378 -m1000000 -dDO_PROGRAM=1 - dDO_VERIFY=1
chiptrip.jam

Jam Player Memory Usage

The Jam Player uses memory in a predictable manner, which simplifies in-

field upgrades by confining updates to the Jam File. The Jam Player

memory uses ROM and dynamic memory (RAM). ROM is used to store

the Jam Player binary and the Jam File. Dynamic memory is used when

the Jam Player is called.

The Jam Player uses memory in the following steps:

1. The Jam Player is called by the controlling software.

2. The Jam Player reads the Jam File into dynamic memory.

3. The Jam Player inflates the compressed data and initializes memory

for the symbol table and stack.
Altera Corporation 179

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Figure 8 shows how the Jam Player uses memory.

Figure 8. Jam Player Memory

When the Jam Player is called, it reads the entire Jam File into a buffer, and

inflates all compressed programming data contained within the Jam File.

Next, it initializes the symbol table, stack, and heap. The symbol table

stores variable and label names declared in the Jam File. The stack stores

the information used for executing FOR loops, CALL statements, and PUSH
statements. The heap is temporary memory for evaluating arithmetic

expressions and stores padding data. Once the symbol table, stack, and

heap are initialized, the Jam Player is ready to parse and execute the Jam

File. While the Jam Player processes the Jam File, the stack and heap

expands and shrinks as commands are encountered. During this process,

the amount of memory used by the Jam File, the uncompressed data, and

the symbol table remains constant.

Estimating ROM Usage

The following equation is used to estimate the maximum amount of ROM

required to store the Jam Player and Jam File:

ROMSIZE = Jam Player size + Jam File size

Jam Player

Heap

Stack

Symbol Table

Uncompressed Data

.jam

.jam

jam.exe

Extra Memory

Extra Memory

Dynamic Memory

ROM

RAMSIZE

ROMSIZEStep 1

Step 2

Step 3
180 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
The Jam File size can be broken into two categories: the amount of

memory required to store just the programming data, and the space

required for the programming algorithm. To describe the Jam File size as

a function of the number of targeted devices, use the following equation:

Jam File size = Alg + ∑ (for N = 1 to k) Data

Where:

Alg = Space used by algorithm

Data = Space used by compressed programming data

N = Index representing family type(s) being targeted

k = Number of targeted devices in the chain

This equation provides a Jam File size estimate that may vary by ±10%,

based on device utilization. When device utilization is low, Jam File sizes

tend to be smaller. Compressed algorithms will likely find repetitive data

for devices with lower logic utilization.

The equation also states that the algorithm size will stay constant for a

device family. However, the programming data will grow slightly as

more devices are targeted. For a device family, the increase in Jam File size

(due to the data component) will be linear.

Tables 3 and 4 show algorithm and data constants for certain Altera

devices.

Note:
(1) When configuring these FLEX 10K devices and programming these MAX 9000,

MAX 7000A, or MAX 7000S devices, the algorithm adds negligible memory usage.

Table 3. Algorithm Constants

Device Family Typical Algorithm Size
(Kbytes)

MAX 7000S and MAX 7000A 30

MAX 9000, MAX 7000A, and MAX 7000S 39

MAX 9000 26

FLEX 10K, MAX 7000A, and MAX 7000S (1) 19

FLEX 10K, MAX 9000, MAX 7000A, and MAX
7000S (1)

39

FLEX 10K 4
Altera Corporation 181

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Once the Jam File is estimated, the Jam Player size can be estimated using

Table 5.

Table 4. Data Constants

Device Typical Data Size per Device
(Kbytes)

EPM7032S, EPM7032A 4

EPM7064S, EPM7064A 7

EPM7128S, EPM7128A 10

EPM7160S, EPM7160A 14

EPM7192S, EPM7192A 19

EPM7256S, EPM7256A 21

EPM9320, EPM9320A 26

EPM9480, EPM9480A 39

EPM9560, EPM9560A 40

EPF10K10 16

EPF10K20 31

EPF10K30 36

EPF10K40 40

EPF10K50 49

EPF10K70 68

EPF10K100 98

Table 5. Jam Player Binary Sizes

Processor Typical Size
(Kbytes)

16-bit Pentium/486 (16-bit DOS) using the
ByteBlaster™ parallel port download cable

105

32-bit Pentium/486 (16-bit DOS) using the BitBlaster™
serial download cable

115
182 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Estimating Dynamic Memory Usage

Use the following equation to estimate the maximum amount of dynamic

memory (RAM) required by the Jam Player:

RAMSIZE = Jam File size + + Symbol table size

The Jam File size is determined by a single- or multiple- device equation

(see “Estimating ROM Usage” on page 180).

The ACA variable is the size of the Nth compressed array when inflated,

where k is the total number of ACA compressed arrays within the Jam

File. To determine the ACA variable size, look in the Jam File’s Variable

Declaration/Initialization section. The size of each array is stated within

brackets of the Variable Declaration statement. For example:

BOOLEAN A21[104320] = ACA mB300u...

In this example, the ACA variable will be 104,320 bits long when inflated.

The Symbol table size is determined by the following equation:

Symbol table size = 48 bytes × JAM_C_MAX_SYMBOL_COUNT

48 bytes is the size of a variable or label name. JAM_C_MAX_SYMBOL_COUNT

is defined in the jamdefs.h file, and the default value is 1,021. However,

most Jam Files will use a maximum of 400 variable and label names. To

conserve memory, you should place the default value around 400.

1 The memory requirement for the stack and heap are negligible,

with respect to the total amount of memory used by the Jam

Player. The maximum depth of the stack is set by the

JAMC_MAX_NESTING_DEPTH constant in the jamdefs.h file.

Estimating Memory: Example

The following example uses a Motorola 68K processor to program an

EPM7128S and EPM7064S device in an IEEE 1149.1 (JTAG) chain. To

determine memory usage, you must first determine the amount of ROM

required and then estimate the RAM usage. You can use the following

steps to calculate the amount of dynamic memory (RAM) required by the

Jam Player.

ACAvariableN
N 1=

k

∑

Altera Corporation 183

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
1. Determine the Jam File size. The Jam File size is estimated by using

the multi-device equation:

Jam File size = Alg + ∑ (for N = 1 to k) Data

Where:

Alg = 19 Kbytes

Data = EPM7064S Data + EPM7128S Data = 7 + 10 = 17 Kbytes

Thus, the Jam File size equals 36 Kbytes.

2. Estimate the Jam Player size. In this example, 115 Kbytes will be

used for the binary size estimation. Use the following equation to

determine the amount of ROM needed:

ROMSIZE + Jam File size + Jam Player size

For this example, the ROMSIZE = 151 Kbytes

3. Next, you should estimate the RAM usage. First, determine the

amount of memory needed to inflate the compressed data. The ACA

variables are (open the Jam File to find the compressed arrays):

BOOLEAN A21[150120] = ACA Db400u...
BOOLEAN A22[97640] = ACA j_200u...

Inflating the compressed data will use the following amount of

RAM:

4. With JAMC_MAX_SYMBOL_COUNT defined as 400, the Symbol table size

can be calculated as follows:

48 bytes × 400 = 19 KBytes

5. Therefore, the total dynamic memory usage is calculated as follows:

RAMSIZE = 36 Kbytes + 30 Kbytes + 19 Kbytes = 85 Kbytes

150 120, 97 640,+()bits

8
bits

byte

--- 30Kbytes=
184 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
As shown in this example, Altera’s Jam implementation will utilize more

RAM than ROM, which is desirable because RAM is cheaper. Although

in-system programming can be implemented with smaller memory

utilization, the trade-off is easy to upgrade. Likewise, the overhead

associated with easy upgrade becomes a lesser factor as larger number of

devices are programmed. In most applications, easy upgrades out weigh

the memory costs.

Low-Level Jam Player Operation

The Jam Player provides a low-level interface for manipulating the IEEE

 1149.1 (JTAG) Test Access Port (TAP) state machine. The TAP controller

is a 16-state state machine that is clocked on the rising edge of TCK, and

uses the TMS pin to control JTAG operation in a device. Figure 9 shows the

flow of a IEEE 1149.1 (JTAG) TAP controller state machine.
Altera Corporation 185

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Figure 9. JTAG TAP Controller State Machine

SELECT_DR_SCAN

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

TMS = 0

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 1

TMS = 0

TMS = 1

TMS = 1

TMS = 0TMS = 0

TMS = 1

TMS = 1

TMS = 0

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

TMS = 0

TMS = 1

TMS = 0

RUN_TEST/
IDLETMS = 0

TEST_LOGIC/
RESETTMS = 1

TMS = 0

TMS = 1 TMS = 1

TMS = 1 TMS = 1

CAPTURE_IR

SELECT_IR_SCAN
186 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Table 6 shows the TAP state machine timing specifications. These timing

parameters are the same as those specified in the IEEE 1149.1 (JTAG)

specification.

Figure 10 illustrates waveforms that correspond to each timing

parameter. The system designer should ensure proper Jam Player

operation for any system, using these timing parameters.

Table 6. JTAG Timing Parameters

Symbol Parameter MAX 9000 MAX 7000S Unit

Min Max Min Max
tJCP TCK clock period 100 100 ns

tJCH TCK clock high time 50 50 ns

tJCL TCK clock low time 50 50 ns

tJPSU JTAG port setup time 20 20 ns

tJPH JTAG port hold time 45 45 ns

tJPCO JTAG port clock to output 25 25 ns

tJPZX JTAG port high-impedance to valid output 25 25 ns

tJPXZ JTAG port valid output to high-impedance 25 25 ns

tJSSU Capture register setup time 20 20 ns

tJSH Capture register hold time 45 45 ns

tJSCO Update register clock to output 25 25 ns

tJSZX Update register high-impedance to valid
output

25 25 ns

tJSXZ Update register valid output to high-
impedance

25 25 ns
Altera Corporation 187

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Figure 10. JTAG Waveforms

While the Jam Player provides a low-level driver that manipulates the

TAP controller, the Jam File provides the high-level intelligence needed to

program a given device. All Jam instructions that force JTAG data to the

device will involve moving the TAP controller through either the data

register leg of the state machine or the instruction register leg. For

example, loading a JTAG instruction involves moving the TAP controller

to the SHIFT_IR state and shifting the instruction into the instruction

register via the TDI pin. Next, the TAP controller is moved to the

RUN_TEST/IDLE state where a delay is implemented to allow the

instruction time to be latched. This process is identical for data register

scans, except the data register leg of the state machine is traversed.

The high-level Jam instructions are the DRSCAN instruction for scanning

the JTAG data register, the IRSCAN instruction for scanning the instruction

register, and the WAIT command that causes the state machine to sit idle

for a specified period of time. Each leg of the TAP controller is scanned

repeatedly, according to instructions in the Jam File, until all of the

targeted devices are programmed.

f For more information on Jam instructions, see the Jam Programming & Test
Language Specification.

TDO

TCK

tJPX tJPCO

tJPH

tJPXZ

 tJCP

 tJPSU tJCL tJCH

TDI

TMS

Signal
to Be

Captured

Signal
to be

Driven

tJSZW

tJSSU tJSH

tJSCO tJSXZ
188 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Figure 11 illustrates the functional behavior of the Jam Player when it

parses the Jam File. Upon encountering a DRSCAN, IRSCAN, or WAIT

instruction, the Jam Player generates the proper data on TCK, TMS, and TDI

to complete the instruction. The flow diagram shows branches for the

DRSCAN, IRSCAN, and WAIT instructions. Although the Jam Player

supports other instructions, they are omitted from the flow diagram for

simplicity.
Altera Corporation 189

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Figure 11. Low-Level Jam Player Flow Diagram (Part 1 of 2)

Shift-IR

Set TMS to 1
and Pulse TCK
Twice

Set TMS to 0
and Pulse TCK
Twice

Switch

Case[]

EOF

Start

Switch

End

EOF?

Test-Logic-Reset

Run-Test/Idle

Set TMS to 1
and Pulse TCK
Five Times

Set TMS to 0
and Pulse TCK

Read Instruction
from the Jam
File

Set TMS to 1
and Pulse TCK
Three Times

F

T

Test-Logic-Reset

Parse Argument

IRSCAN

DRSCAN

Switch

Set TMS to 0
and Pulse TCK

Delay

WAIT

Run-Test/Idle

Select-IR-Scan

Shift-IR

Set TMS to 0
and Pulse TCK
and Write TDI

Set TMS to 0
and Pulse TCK
and Write TDI

Set TMS to 1
and Pulse TCK

Set TMS to 0
and Pulse TCK

Set TMS to 1
and Pulse TCK
Twice

Set TMS to 0
and Pulse TCK

Shift-IR

Exit1-IR

Pause-IR

Update-IR

Run-Test/Idle

Shift-DR

Set TMS to 0
and Pulse TCK
and Write TDI

Set TMS to 0
and Pulse TCK
Twice

Set TMS to 1
and Pulse TCK

Parse Argument

Shift-DR

Select-DR-Scan

Continued on
Part 2 of
Flow Diagram
190 Altera Corporation

AN 88: Using the Jam Langua ge for ISP via an Embed ded Pr ocessor
Figure 11. Low-Level Jam Player Flow Diagram (Part 2 of 2)

Conclusion To achieve the benefits of in-system programming via an embedded

processor, the Jam Programming and Test Language successfully meets

necessary system requirements such as small file sizes, ease of use, and

platform independence. Using the Jam language for in-system

programming via an embedded processor supports in-field upgrades,

easy design prototyping, and fast production. These benefits lengthen the

life and enhance the quality and flexibility of the end products, and they

can also reduce device inventories by eliminating the need to stock and

track programmed devices.

Switch

Update-IR

Run-Test/Idle

Set TMS to 1
and Pulse TCK

Set TMS to 0
and Pulse TCK

Switch

Update-IR

Run-Test/Idle

Set TMS to 1
and Pulse TCK

Set TMS to 0
and Pulse TCK

Loop<
DR Length

Set TMS to 1
and Pulse TCK
and Store TDO

Set TMS to 0
and Pulse TCK,
Write TDI, and
Store TDO

Shift-DR Exit1-DR

F

F

T

Report
Error

Default
Case[]

Loop<
DR Length

Set TMS to 1
and Pulse TCK
and Store TDO

Set TMS to 0
and Pulse TCK,
Write TDI, and
Store TDO

Compare

Capture

Exit1-DR

Switch

Update-IR

Run-Test/Idle

Set TMS to 1
and Pulse TCK

Set TMS to 0
and Pulse TCK

Shift-DR

Loop<
DR Length

Set TMS to 1
and Pulse TCK
and Store TDO

Set TMS to 0
and Pulse TCK
and Write TDI

Shift-DRExit1-DR

Continued from
Part 1 of
Flow Diagram

Correct
TDO Value
Altera Corporation 191

Copyright © 1995, 1996, 1997, 1998 Altera Corporation, 101 Innovation Drive,

San Jose, CA 95134, USA, all rights reserved.

By accessing this information, you agree to be bound by the terms of Altera’s

Legal Notice.

	Contents
	AN 88: Using the Jam Language for ISP via an Embedded Processor
	Introduction
	Embedded System Configuration�& Requirements
	Embedded Programming with the Jam Language
	The Jam File (.jam)
	Generating a Jam File
	Initialization Conventions
	Jam File Structure

	The Jam Player
	Customizing the Jam Player
	Executing the Jam Player
	Jam Player Memory Usage
	Estimating ROM Usage
	Estimating Dynamic Memory Usage
	Estimating Memory: Example

	Low-Level Jam Player Operation

	Conclusion

